Neyman, Markov processes and survival analysis.
نویسنده
چکیده
J. Neyman used stochastic processes extensively in his applied work. One example is the Fix and Neyman (F-N) competing risks model (1951) that uses finite homogeneous Markov processes to analyse clinical trials with breast cancer patients. We revisit the F-N model, and compare it with the Kaplan-Meier (K-M) formulation for right censored data. The comparison offers a way to generalize the K-M formulation to include risks of recovery and relapses in the calculation of a patient's survival probability. The generalization is to extend the F-N model to a nonhomogeneous Markov process. Closed-form solutions of the survival probability are available in special cases of the nonhomogeneous processes, like the popular multiple decrement model (including the K-M model) and Chiang's staging model, but these models do not consider recovery and relapses while the F-N model does. An analysis of sero-epidemiology current status data with recurrent events is illustrated. Fix and Neyman used Neyman's RBAN (regular best asymptotic normal) estimates for the risks, and provided a numerical example showing the importance of considering both the survival probability and the length of time of a patient living a normal life in the evaluation of clinical trials. The said extension would result in a complicated model and it is unlikely to find analytical closed-form solutions for survival analysis. With ever increasing computing power, numerical methods offer a viable way of investigating the problem.
منابع مشابه
Application of Markov Processes to the Machine Delays Analysis
Production and non-productive equipment and personnel delays are a critical element of any production system. The frequency and length of delays impact heavily on the production and economic efficiency of these systems. Machining processes in wood industry are particularly vulnerable to productive and non-productive delays. Whereas, traditional manufacturing industries usually operate on homoge...
متن کاملFrom Markov Chains to Stochastic Games
Markov chains1 and Markov decision processes (MDPs) are special cases of stochastic games. Markov chains describe the dynamics of the states of a stochastic game where each player has a single action in each state. Similarly, the dynamics of the states of a stochastic game form a Markov chain whenever the players’ strategies are stationary. Markov decision processes are stochastic games with a ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Lifetime data analysis
دوره 19 3 شماره
صفحات -
تاریخ انتشار 2013